Free vibrations analysis of cracked variable stiffness composite plates by the eXtended Ritz method

نویسندگان

چکیده

Variable stiffness composite laminates show advantageous structural features related to their enlarged design space. They are attractive candidates for advanced engineering applications where the assessment of static and dynamic behavior strength in presence cracks is often required. In present work, a single-domain extended Ritz formulation proposed study free vibrations cracked variable plates. The plate model based on first-order shear deformation theory whose primary variable, i.e. displacements rotations, approximated via set orthogonal polynomial trial functions enriched with special crack functions. These able inherently account opening tip singular fields. governing equations deduced by stationarity energy functional has been implemented computer code. method validated comparing results literature solutions isotropic plates uncracked as, best author’s knowledge, no data available. An explicative representative angle tow finally presented aim illustrating approach capabilities, providing benchmarck identifying distinctive opportunities concept damage tolerant structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Vibration Analysis of Composite Plates with Artificial Springs by Trigonometric Ritz Method

In this paper free vibration analysis of two rectangular isotropic plates, which are connected to each other by two translational and rotational springs along the edges, are investigated. The equation of motion and associated boundary and continuity conditions are derived using the extended Hamilton principle. To solve the eigenvalue problem, the Ritz method is utilized. Numerical investigation...

متن کامل

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Free vibration analysis of variable stiffness composite laminated thin skew plates using IGA

A NURBS-based isogeometric finite element formulation is developed and adopted to the free vibration analysis of finite square and skew laminated plates. Variable stiffness plies are assumed due to implementation of curvilinear fiberreinforcements. It is assumed due to employment of tow placement technology, in each ply of variable stiffness composite laminated plate the fiber reinforceme...

متن کامل

free vibration analysis of composite plates with artificial springs by trigonometric ritz method

in this paper free vibration analysis of two rectangular isotropic plates, which are connected to each other by two translational and rotational springs along the edges, are investigated. the equation of motion and associated boundary and continuity conditions are derived using the extended hamilton principle. to solve the eigenvalue problem, the ritz method is utilized. numerical investigation...

متن کامل

Buckling Analysis of Variable Stiffness Composite Laminates by Semi-Analytical Finite Strip Method

Plates made of laminated composite materials with variable stiffness can have wide applications in various branches of engineering due to such advantages as high strength /stiffness to weight ratio. In these composites, curved fibers are used to reinforce each lamina instead of the straight fibers. In this paper, the application of finite strip method for the buckling analysis of moderately thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mechanics of Advanced Materials and Structures

سال: 2022

ISSN: ['1537-6532', '1537-6494']

DOI: https://doi.org/10.1080/15376494.2022.2038742